
Upgrades

Henri Piron, Technical consultant Upgrade Team

Donat van Steenbergh, Team Leader Channel

Context

Business

Technical

2

1

3

Tips & Tricks

Q&A5

4

Agenda

Business

Today’s reality

The life of an
ERP implementation.

sa
ti
sf
ac
ti
on

time

sa
ti
sf
ac
ti
on

time

It starts with an
inefficient company

sa
ti
sf
ac
ti
on

time

Selecting an ERP:
the seduction phase

sa
ti
sf
ac
ti
on

time

The implementation:
living together

sa
ti
sf
ac
ti
on

time

Going live:
the wedding

sa
ti
sf
ac
ti
on

time

An efficient tool:
a happy life

sa
ti
sf
ac
ti
on

time

Most companies
follow the same curve

sa
ti
sf
ac
ti
on

time

sa
ti
sf
ac
ti
on

time

Dragged by the weight
of the technical debt

Why are some companies
dragged by the weight of

the technical debt?

Why are some company dragged down by the technical debt ?

● Not integrator’s priority
● Stick to Older Version

● Nobody wants to fix issues

This leads to the following issues

● Customer stuck on unsupported versions

This leads to the following issues

More than 52% of
our customers older
than 3 years are on
unsupported
versions

This leads to the following issues

● Customer stuck on unsupported versions
● Unsatisfied customers ⇒ Higher risk of churn
● Missed opportunities to sell more services

Important to have maintenance/upgrade contract !

What type of contract
should you sell ?

Any contract is better
than nothing …

● Internalize costs

● Contract should cover maintenance and upgrade.

● Insurance that is prepaid

● Recurrent vs T&M

Key elements

1) Keeps customers on updated versions
2) Avoid bad surprises for customer and issues getting bigger
3) Incentive for integrators to maintain old customers (opportunity to sell

services)
4) Customer have a guarantee

Benefits of maintenance contract

How to evaluate the value of the contract ?

3 years ago: launch of the “Standard maintenance contract” based on the
amount of Lines of Code (LoC)

Purpose:

- Guarantee of Odoo as a back up (support, bug fixes and upgrade)
- Simple for the customer (1 contract to cover everything)
- Good tool to limit increase in LoC
- Easily auditable and transparent pricing (can be automated)
- Monthly installment possible = affordable

⇒ 16€ / 100 Lines of Code

Different types of contracts

● Good tool to limit development

● Easily auditable and transparent

● Reward the code refactoring

● Good for community modules

Based on LoC
● Known market practice
● ~ 20% of development cost to

pay on a yearly basis.

Based on a % of the budget

● No insurance

● No provisioning

T&M (on demand)

Best Practices

● Limit the amount of upgrades

● Define what is included vs what needs to be paid

Technical vs Functional

● Upgrade Support via DoD services

● Give a budget/timing to your maintenance team

Technical

Technical Agenda

Documentation

Studio & Upgrades

Scripts vs Manual

2

1

3

Tips & Tricks

Q&A5

4

Documentation update

● Getting an upgraded database
● Testing
● Going in production

Standard
● Steps we follow
● Good practices

Custom

Documentation update

Documentation update

Testing: involve the customer
● Define key users: 1 in each team, managers,...

● What are their critical flows?

○ Get them to test what they do the most

○ Complete full flows

Documentation update

Documentation update

Studio & Upgrades

Studio & Upgrade
Studio
● Be aware of the risk
● Think of it as development ⇒ it creates a technical debt
● It increases the probability of issues

Upgrade

Studio & Upgrade

● Test it: just like custom code
● Submit your issues: odoo.com/help

http://odoo.com/help

Custom

Studio & Custom modules

● Avoid mixing
● If you built studio on top of custom

⇒ you are responsible

Scripts vs manual work?

Scripts
● Avoid manual actions

● Do the job once

● Migrate data

Scripts: how?
● migrations folder

● version folder

● pre- , post-, end- prefixes

Documentation

https://www.odoo.com/documentation/17.0/developer/howtos/upgrade_custom_db.html

● custom_module

17.0.1.0.1

pre-fix-field.py

__manifest__.py

● Version in database 17.0.1.0.0
● Version in manifest 17.0.1.0.1

Documentation

Scripts: how?

module update

https://www.odoo.com/documentation/17.0/developer/howtos/upgrade_custom_db.html

One script instead of multiple
action

● All those actions can be done manually
● It can require thousands of actions

Anything done manually can be scripted

from odoo.upgrade import util

def migrate(cr, version):

 # Get the environment

 env = util.env(cr)

 # Set a parameter

 env['res.company'].browse(1).filter_allowed_carriers = True

 # Recompute a stored field

 ids = env['sale.order'].search([

 ('delivery_status', '=', 'pending')

]).ids

 util.recompute_fields(

 cr, 'sale.order', ['shipping_weight'], ids

)

Example

Util & Custom util
github.com/odoo/upgrade-util github.com/odoo-ps/custom-util

● Used in odoo upgrade scripts
● Helpers

Util Custom-Util
● Used in custom upgrades
● Custom modules helpers

https://github.com/odoo/upgrade-util
https://github.com/odoo-ps/custom-util

Tips & tricks

Avoid developing on Standard

● The more you customize

standard feature

● The hardest it is to upgrade

Time required
to upgrade

Proximity to
standard code

Easier to upgrade
● New models/fields

● New features

● New applications

● Integrations

Common point:

Standard code changes are less likely to have an impact on them

Have an upgrade team
● Build long term

● Gain expertise

● Everybody should have done an upgrade

Implementation & upgrade teams

● Project specific expertise
● Customer relationship

Implementation Upgrade
● Process knowledge
● Good practices

Get the best of both worlds

Every 3 versions maximum
● Get new features

● Don’t overgrow the technical debt

● 6 months process every 3 years

⇒ 17% of the time spent upgrading

● Stay supported

/odoo

@odoo.official

Henri Piron
hepi@odoo.com

Donat van Steenbergh
dav@odoo.com

Thank you!

